Neoclassical orbit calculations with a full-f code for tokamak edge plasmas* T.D. Rognlien, R.H. Cohen, J.A.A. Hittinger, M.R. Dorr, X.Q. Xu *FEP, Lawrence Livermore National Laboratory* P. Colella, D. Martin *Lawrence Berkeley National Laboratory* Presented at the APS-DPP Annual Meeting Nov. 17-21, 2008 Dallas, TX ^{*} Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. #### **Outline** - Goal and overview of Edge Simulation Laboratory codes - TEMPEST prototype 4D and 5D code applied to circular and divertor geometries - reported here and by Xu this meeting; April '08 ITPA; Xu et al., PRL, Phys. Rev. E '08 - Next generation 4D (--> 5D) code that builds on experience with TEMPEST, EGK, and NEO - status reported here ## Goal: gyrokinetic 4D and 5D continuum edge simulations for pedestal and SOL physics $$\begin{split} \frac{\partial F_{\alpha}}{\partial t} &+ & \bar{\mathbf{v}}_{\mathbf{d}} \cdot \nabla_{\perp} F_{\alpha} + (\bar{v}_{\parallel \alpha} + v_{Banos}) \nabla_{\parallel} \partial F_{\alpha} \\ &+ & \left[q \frac{\partial \langle \Phi_{0} \rangle}{\partial t} + \bar{\mu} \frac{\partial B}{\partial t} - \frac{qB}{B^{*}} \bar{v}_{\parallel} \nabla_{\parallel} \langle \delta \phi \rangle - q \mathbf{v}_{\mathbf{d}}^{0} \cdot \bar{\nabla} \langle \delta \phi \rangle \right] \frac{\partial F_{\alpha}}{\partial E_{0}} \\ &= & C(F_{\alpha}, F_{\alpha}), \end{split}$$ - GK F-equation discretized with high order (4th); Fokker-Planck collisions; here energy-dependent Lorentz op. - Electrostatic potential via <u>Poisson eqn</u> - Circular & divertor geometry - Runnable as - 4-D for transport with $F(\Psi, \theta, \varepsilon, \mu)$, or - 5-D for turbulence with $F(\Psi, \theta, \phi, \epsilon, \mu)$ underway - Extensions planned: - sources/sinks - model transport coefficients for initial anomalous transp. - generalized GK equations (see Qin; Dimits) - *field-aligned coordinates for evolving B Divertor plates #### **Edge Simulation Laboratory: code history** - TEMPEST prototype 4D and 5D code applied to circular and divertor geometries - reported here and by Xu this meeting; Xu et al., PRL, Phys. Rev. E '08 - Next generation 4D (--> 5D) code that builds on experience with TEMPEST, EGK, and NEO - reported here - EGK and NEO prototype flux-tube codes - Invited talk, this APS-DPP meeting ### TEMPEST simulates kinetic ion profiles/ transport for a DIII-D magnetic equilibrium - To clarify details of the results, the thin annular edge region is displayed in a convenient slab image - Nevertheless, computations include full toroidal geometry effects ### TEMPEST simulations in divertor geometry with model E_r indicate expected asymmetries and non-Maxwellian f ### TEMPEST simulations in divertor geometry with model E_r indicate expected asymmetries and non-Maxwellian f # Pedestal profiles of n_i and T_i show strong poloidal asymmetries - even with E_r ## Steep-gradient case illustrates need for high-order advection scheme ## Developing algorithms and next generation code to deal with the challenges of edge GK ### Experience with TEMPEST, EGK, and NEO emphasize needs: - Conservation - Low-dissipation advection (orbits) - Preservation of distribution function positivity - Efficient resolution of a large and complicated phase space - Use $f(v_{||},\mu)$ or $f(v_{||},\theta_{pa})$, not $f(E,\mu)$ - Robust for high anisotropy # Applied math participants: M. Dorr, J. Hittinger, LLNL P. Colella, D. Martin, LBNL #### Numerical methodologies: - Finite volume discretizations with conservative formulations - High-order (4th) discretization - Mapped, multiblock grids - Data structures allow parallization in both configuration & velocity space Consistent 4th order treatment of geometry and function variations on <u>uniform</u> mapped mesh ### Have developed high-resolution discretizations and are applying to gyrokinetic Vlasov equation Gyrokinetic Vlasov equation describes advection by a phase space velocity field that is a nonlocal function of the distribution function f : $$rac{\partial f}{\partial t} + oldsymbol{ abla}_{oldsymbol{R}} \cdot \left(\dot{oldsymbol{R}}(f) f ight) + rac{\partial}{\partial v_{\parallel}} \left(\dot{v}_{\parallel}(f) f ight) = 0$$ - Dependence of the phase space velocities $\dot{m{R}}$ and $\dot{m{v}}_{\parallel}$ on f is through the Poisson solve - To obtain a high-order discretization that is robust for this highly nonlinear system, we combine - fourth-order flux-corrected transport (FCT) spatial discretization: as part of this project - Colella and Sekora, JCP '08 - fourth-order accuracy where solution is smooth (does not reduce accuracy at smooth extrema like classical FCT and PPM) - combined with an FCT limiter (Zalesak) preserves positivity of f ### Temporal convection of 2D "blobs and holes" show robustness of new method # Application of the mapped grid finite volume discretization to an advection test problem # 4th-order accuracy GK Poisson discretization obtained on core equilibrium geometries Demonstrate accuracy: Given Φ , use quadrature to manufacture ρ such that $$oldsymbol{ abla} \cdot \left\{ \left[\epsilon_0 oldsymbol{I} + rac{n_i}{B^2} \left(oldsymbol{I} - oldsymbol{ec{b}} oldsymbol{ec{b}}^T ight) ight] oldsymbol{ abla} \Phi ight\} = ho$$ prescribed density profile n_i and a magnetic field from an analytically Miller equilibrium model Verification of 4th order convergence Number on cell points in one direction Convergence of Hypre CG solver preconditioned with multigrid solution of second-order operator | iter | Relative residual | |------|-------------------| | 1 | 6.62e-03 | | 2 | 1.19e-03 | | 3 | 2.24e-04 | | 4 | 1.17e-04 | | 5 | 4.59e-05 | | 6 | 1.18e-05 | ### Schedule for next year: - New ESL code released to physics team: - Now completing 4D, core: results by Dec - 4D, divertor: spring '09 - 5D, core: summer-fall '09 - 5D, divertor, start summer '09 ### **Summary** - 1. Kinetic ion orbit effects produce substantial poloidal variations in n_i and T_i; E_r via orbit squeezing can reduce variation, but orbit loss can also be influential - 2. New ESL code components being assembled/tested - Advection tested - Poisson eqn -tested - 4D version with drift orbits nearly assembled